
Graph Neural Networks
11785 Deep Learning

Fall 2024
Gabrial Zencha & Carmel SAGBO

11-785, Fall 2024

1



2

Models so far

• MLPs are universal function approximators

– Boolean functions, classifiers, and regressions

• MLPs can be trained through variations of 

gradient descent

– Gradients can be computed by backpropagation



MLP Model

• Can recognize patterns in data

– E.g. digits

– Or any other vector data

input 
layer

output layer

Or, more generally a 
vector input
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• CNNs designed for image and spatial data

– Convolutional layers learn spatial patterns (e.g., edges, 
textures).

– Pooling layers reduce spatial dimensions while retaining key 
features.

• CNNs can be trained through variations of gradient 

descent

– Gradients can be computed by backpropagation

Models so far



CNN  Model
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• Sequence-to-Sequence Models: sequential data.

– RNNs, LSTMS, Transformers

– Encode input sequence and decode the encoded sequence.

• RNNs, LSTMS, Transformers can be trained through 

variations of gradient descent

– Gradients can be computed by backpropagation

Models so far
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Sequence-to-Sequence  Model
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Data that resides in structured, grid-like spaces with well-defined dimensions and coordinate systems

– Tabular Data (MLPs): Rows and columns.

– Images (CNNs): 2D grids of pixel intensities.

– Videos (3D CNNs): Sequential frames forming a 
spatiotemporal grid.

– Sequences (RNNs, LSTMs Transformers): 1D ordered data like 
text or time-series.

Data seen so far (Euclidean Data)

8



Data that resides in irregular, non-grid-like structures where relationships are not confined to regular 
Euclidean spaces.

– Graphs:  Nodes and edges representing entities and 
relationships.

■ Social networks: People connected by friendships.

■ Molecules: Atoms connected by chemical bonds.

■ Knowledge graphs: Entities linked by relationships.

– Manifolds: Curved surfaces, e.g., 3D shapes or mesh data.

– Point Clouds: Sets of points in 3D space without a grid 
structure (e.g., LiDAR data).

Non Euclidean Data
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Real-World Data is Often Non-Euclidean
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Traffic  Networks



Real-World Data is Often Non-Euclidean
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Social Networks



Real-World Data is Often Non-Euclidean
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Knowledge Graphs



Real-World Data is Often Non-Euclidean
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Complex relationships



– Fixed Grid Assumptions (MLPs, CNNs, RNNs)

■ Assume regular, structured data (e.g., grids or 
sequences).

■ Cannot directly handle irregular neighborhoods or 
variable node connectivity in graphs or other 
non-Euclidean structures.

Non-Euclidean data lacks the regular grid structure required for 
traditional convolution or recurrent processing.

Challenges in handling Non-Euclidean Data
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Irregular Neighborhoods:

■ Varying numbers of neighbors per node.

■ No uniform notion of proximity or direction.

Standard convolution filters (which operate on fixed local 
neighborhoods) fail to adapt to these variable structures.

Challenges in handling Non-Euclidean Data
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Lack of Spatial Regularity:

– The concept of "locality" is not fixed and varies across the 
structure.

Order Sensitivity:

– Non-Euclidean data like point clouds, graphs  (undirected)  
is unordered.

Defining meaningful filters or operations without losing structural 
information is non-trivial.

We need a permutation invariant / equivariant

Challenges in handling Non-Euclidean Data

16



– Enabling Novel Applications

■ Drug discovery: Predict molecule effectiveness or toxicity.

■ Social network analysis: Detect influencers or communities.

■ Recommender systems: Suggest products or content using knowledge 
graphs.

– Capturing Complex Relationships

■ Many problems require understanding relationships, not just data points.

– Improved Performance in Existing Tasks

■ Models that consider the graph of road networks outperform grid-based 
approaches by understanding connectivity.

Why it Matters ?
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Poll 1
True or False

1. Euclidean data refers to data that lies in a space where the 

distance between points is calculated using the Euclidean 

distance formula, while non-Euclidean data involves spaces 

where the concept of distance may follow different rules, such 

as hyperbolic or graph-based distances.

2. CNNs and MLPs are specifically designed to handle 

non-Euclidean data, such as graphs and hyperbolic spaces, 

without any modifications.



Poll 1
True or False

1. Euclidean data refers to data that lies in a space where the 

distance between points is calculated using the Euclidean 

distance formula, while non-Euclidean data involves spaces 

where the concept of distance may follow different rules, such 

as hyperbolic or graph-based distances. (True)

2. CNNs and MLPs are specifically designed to handle 

non-Euclidean data, such as graphs and hyperbolic spaces, 

without any modifications. (False)



How to solve challenges faced by other models 
(MLPs, CNNS, Seq-Seq) with  Non-Euclidean data 

Graph Neural Networks



What is a Graph ?
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– In one restricted but very common sense of the term, a graph 
is an ordered pair G = (V, E) comprising :

■ V a set of vertices (also called nodes or points)

■ E ⊆ {{x, y}|x, y ∈ V and x ≠ y} a set of edges (also called 
links or lines), which are unordered pairs of vertices (that 
is, an edge is associated with two distinct vertices).



Graph Representation
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A Graph is generally represented using these different forms:
- The adjacency Matrix A :

 It is a n × n matrix in which:

• n in the number of vertices

• A(i, j) = 1 only if there is a link from i to j and

• A(i, j) = 0 if not.

- Other common representation is based of Edge Features or Node Features.
-



Graph Node Embeddings
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- Motivation for Graph Node Embedding
▪ GloVe co-occurrence graph → word embedding → NLP

▪ Hyperlinked websites → page embedding → websites classification

▪ Citation graphs → article embedding → literature classification

▪ Co-author graphs → author embedding → community detection

▪ Molecular structure graph → atom embedding → AI for science

- Unified view
▪ Nodes can be any objects (words, documents, authors, atoms, proteins, etc.)
▪ Links represent the interactions or dependencies among nodes.
▪ Embedding Vectors

o Capturing the latent features of nodes based on graph structures
o Supporting down-stream prediction tasks (node/graph classification, community detection, 
dense retrieval, etc.)

@Yiming Yang, 11-741 Lecture on Graph-based Node Embedding



Graph Node Embedding
Intuition: Map nodes to d-dimensional embeddings 

such that similar nodes in the graph are embedded close 

together

How to learn the mapping function f
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Poll 2

True or False

Node embeddings aim to map nodes in a graph to a continuous 

vector space while preserving their structural and semantic 

properties.



Poll 2

True or False

Node embeddings aim to map nodes in a graph to a continuous 

vector space while preserving their structural and semantic 

properties. (True)



Graph Learning Task 

27Khemani et al. Journal of Big Data (2024) 11:18



Graph Learning Task 

28Khemani et al. Journal of Big Data (2024) 11:18



Overview



Node Classification



Using an MLP Node Level Classification

Apply a linear classifier to the embeddings (node, edge,graph)

Train the classifier using variation of SGD, with gradients calculated using backpropagation



Using an MLP Node Level Classification

Apply a linear classifier to the embeddings (node)
Train the classifier using variation of SGD
Gradients calculated with backpropagation



Using an MLP Node Level Classification

Train the classifier using variation of SGD
Gradients calculated with backpropagation



Edge Level Prediction
If Information stored in Edges

- Use MLP on edge embeddings

If Information is stored in Nodes

- Pool neighboring node embeddings

- Aggregate them to form new edge embeddings

- Use MLP on new edge embeddings 

Can we generalize this ?



Graph Covulutional Network 

35Jian, Du & Shi, John & Kar, Soummya & Moura, Jose. (2018). ON GRAPH CONVOLUTION FOR GRAPH CNNS. 1-5. 10.1109/DSW.2018.8439904. 



Graph Convolution Vs CNN

36Jian, Du & Shi, John & Kar, Soummya & Moura, Jose. (2018). ON GRAPH CONVOLUTION FOR GRAPH CNNS. 1-5. 10.1109/DSW.2018.8439904. 



A step back at CNNs
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Convolutions process data by aggregating information from a fixed local neighborhood of 
pixels using filters (kernels).

Assumption: Data lies on a regular Euclidean grid, where neighboring pixels are 
equidistant and uniformly connected.



Graph Convolution 
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Three stage process.

1. Message Passing: Each node sends its features to its neighboring nodes, as defined 
by the graph's edges.

2. Aggregation: Each node collects and combines the features received from its 
neighbors (e.g., via sum, mean, or max).

3. Update: Each node updates its feature representation by applying a transformation 
(e.g., using a neural network layer) to the aggregated features.



1: Message Passing
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1: Message Passing (Message Creation)
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2: Aggregation Step
● Generate node embeddings based on local network 

neighborhoods.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41



2: Aggregation Step
Intuition: Nodes aggregate information from their 

neighbors using neural networks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42



2: Aggregation Step
Network neighborhood defines a computation graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43



Deep Model: Many Layers
Model can be of arbitrary depth:
▪ Nodes have embeddings at each layer
▪ Layer-0 embedding of node v is its input feature, 
▪ Layer-k embedding gets information from nodes that are k hops away

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44



2: Aggregation Step
Neighborhood aggregation: Key distinctions are in how different 

approaches aggregate

information across the layers

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45



2: Aggregation Step
Basic approach: Average information from neighbors 

and apply a neural network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



3: Update Step
Basic approach: Average information from neighbors 

and apply a neural network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
47



Model Training

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48



Model Training

We can feed these embeddings into any loss function and run SGD to train the 

weight parameters

ℎ𝑣
𝑘 : the hidden representation of node 𝑣 at layer 𝑘  

𝑊𝑘: weight matrix for neighborhood aggregation  

𝐵𝑘: weight matrix for transforming hidden vector of self
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Model Training

Node embedding 𝒛𝑣 is a function of input graph  

Supervised setting: We want to minimize the loss 

▪ 𝒚: node label 

▪ ℒ could be L2 if 𝒚 is real number, or cross entropy if 𝒚 is 

categorical  

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50



Model Training
Directly train the model for a supervised task

(e.g., node classification)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51



Model Training
Directly train the model for a graph learning  task

(e.g., node classification) 

Use cross entropy loss 

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52



Classical GNN Layers: GraphSAGE

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



GraphSAGE Neighbor Aggregation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



GraphSAGE: L2 Normalization

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Poll 3

True or False

A Graph Neural Network (GNN) using graph convolution 

can still be trained for edge-level prediction even if there is 

no information in the nodes



Poll 3

True or False

A Graph Neural Network (GNN) using graph convolution 

can still be trained for edge-level prediction even if there is 

no information in the nodes (True)



GAT: Graph Attention Networks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Classical GNN Layers : GAT 
Graph Attention Networks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Graph Attention Network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Attention Mechanism

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Attention Mechanism

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Attention Mechanism

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Attention Mechanism

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Benefit of attention Mechanism
● Key benefit: Allows for (implicitly) specifying different importance values             

to different neighbors 

● Computationally efficient:
○ Computation of attentional coefficients can be parallelized across all edges of the 

graph

○ Aggregation may be parallelized across all nodes

● Storage efficient:
○ Sparse matrix operations do not require more than O(V + E) entries to be stored
○ Fixed number of parameters, irrespective of graph size

● Localized: 
○ Only attends over local network neighborhoods

● Inductive capability:
○ It is a shared edge-wise mechanism
○ It does not depend on the global graph structure

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



GAT Exemple: Core Citation Net

t-SNE plot of GAT-based node embeddings:
❏ Node color: 7 publication classes
❏ Edge thickness: Normalized attention coefficients between nodes i and j, across 

eight attention heads, 
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Stacking GNN Layers

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Stacking GNN Layers
How to construct a Graph Neural Network?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



In summary
● Traditional Neural Networks types can be used in various learning 

tasks, 

● However it does not work well for all types of data,

● Graph Neural Networks can help in such a situation where we rely on 

relationships between entities (eg: Social Network, Drug Discovery),

● GNN, GCN, GraphSAGE, GAT etc

● General techniques for model training are  for GNN

○ Dropout, Feature Augmentation or Structure Augmentation (Virtual 
Nodes or edges, Sample neighbors when, doing message 
passing etc)


